216
Chapter 6
f
1
1
••
1
'
(
c J
'-'1
- C n
- C
1,/-1
r l
0
• •
0"
£u
f 12
•'•
£U
CJ
- c 2l
-
c
v~'2,/-l
.
0
1
■ •
0
Ksi-u
£!-\
,/
)
C J
-C ,,
^/,/-1
)
,0
0
b
or
EC* =1
(6.41)
(6.42)
where I is the unity matrix (dimension
/*/). For a nonsingular E, the control coefficients are
obtained as
C* = E 1
and the control coefficients are elements of C* determined as:
C / =
C’t
and C.
= - C* ,
j >
(6.43)
(6.44)
Example 6.3 Flux control coefficients from elasticities in a simple example.
In the introductory example case (6.23b) one calculates
e
n
ÔS
1
r,
k.s
KJ.
K.„
f
(
\ Ÿ K
r.
/
(
,
33
s + K,
1 + ^ -
s + K
,
!+TT-
V
l
KJ
J
'v
l
K“l JJ
(
1
)
dr2
5,
K2
_
c
&,
r2
5, +
K2
y + c
(2)
Using (6.41) one obtains :
previous page 239 Bioreaction Engineering Principles, Second Edition  read online next page 241 Bioreaction Engineering Principles, Second Edition  read online Home Toggle text on/off