314
Chapter 7
Prosser, J. 1. and Tough, A. J. (1991). Growth mechanisms and growth kinetics of filamentous microorganisms,
Crit. Rev.
BiotechnoL
10:253-274.
Ramkrishna, D. (1982) A cybernetic perspective of microbial growth, in
Foundations of Biochemical Engineering: Kinetics and
Thermodynamics in Biological Systems,
American Chemical Society, 161-178.
Ramkrishna, D., Fredrickson, A. G., Tsuchiya, H. M. (1967) Dynamics of microbial propagation: Models considering inhibitors and
variable cell composition,
BiotechnoL Bioeng.
9,129-170.
Ramkrishna, D., Kompala, D. S., Tsao, G. T. (1984), Cybernetic modeling of microbial populations. Growth on mixed substrates, in
Frontiers in Chemical Reaction Engineering,
Vol. 1, Wiley Eastern Ltd., New Delhi, 241-261.
Ramkrishna, D., Kompala, D. S., Tsao, G. T. (1987) Are microbes optimal strategists?
BiotechnoL Prog.
3, 121-126.
Rieger, M„ Kappeli, O., Fiechter, A. (1983). The role of limited respiration in the incomplete oxidation of glucose by Saceharomyces
cerevisiae,
J. Gen. Microbiol.
129,653-661.
Robinson, P. M. and Smith, J. M. (1979). Development of cells and hyphaeof
Geotrichum candidum
in chemostat and batch culture,
Proc. Br. Mycol. Soc
72:39-47.
Roels, J, A. (1983)
Energetics and Kinetics in Biotechnology,
Elsevier Biomedical Press, Amsterdam.
Roels, J. A., Kossen, N. W. F. (1978). On the modeling of microbial metabolism,
Prog. Ind. Microbiol.
14, 95-204.
Seo, J.-H., Bailey, J. E. (1985) Effects of recombinant plasmid content on growth properties and cloned gene product formation in
Escherichia coli, BiotechnoL Bioeng.
27, 1668-1674.
Shuler, M. L., Domach, M. M. (1982) Mathematical models of the growth of individual cells, in
Foundations of Biochemical
Engineering: Kinetics and Thermodynamics in Biological Systems,
American Chemical Society Publications, 93-133.
Shuler, M. L., Leung, S. K., Dick, C. C. (1979). A mathematical model for the growth of a single bacterial cell, .-inn,
N. Y. Acad. Sci.
326,35-55.
Sohn, Ho-Yong, and Kuriyama, H.(2001) Ultradian metabolic oscillation of
Saceharomyces cerevisiae
during aerobic
continuous culture: Hydrogen sulphide, a population synchronizer, is produced by sulphite reductase.
Yeast
18,125-135
Sonnleitner, B. and Kappeli, 0. (1986) Growth of
Saceharomyces cerevisiae
is controlled by its limited respiratory capacity:
Formulation and va-ification of a hypothesis,
BiotechnoL Bioeng.
28:927-937.
Spohr, A. B, Mikkelsen, C. D., Carlsen, M., Nielsen, J., Villadsen, J. (1998) On-line study of fungal morphology during
submerged growth in a small flow-through cell.
BiotechnoL Bioeng.
58, 541-553
Strassle, C., Sonnleitner, B., and Fiechter, A. (1988) A predictive mode) for the spontaneous synchronization of
Saceharomyces
cerevisiae
grown in continuous culture I. Concept,
J BiotechnoL
7:299-318.
Strassle, C., Sonnleitner, B., and Fiechter, A. (1989) A predictive model for the spontaneous synchronization of
Saceharomyces
cerevisiae
grown in continuous culture II. Experimental verification,
J. BiotechnoL
9:191-208.
Strudsholm, K., Nielsen, J., Emborg, C. (1992), Product formation during hatch fermentation with recombinant E. coli containing a
runaway plasmid,
Bioproc. Eng.
8,173-181.
Sweere, A. P. J., Giesselbach, J., Barendse, R., de Krieger, R„ Honderd. G., Luyben, K. Ch. A. M. (1988). Modeling the dynamic
behaviour of Saceharomyces cerevisiae and its application in control experiments,
Appl. Microbiol. BiotechnoL
28, 116-127.
Trinci, A. P. J. (1974) A study of the kinetics of hyphal extension and branch initiation of fungal mycelia,
J. Gen. Microbiol
81:225-236.
Trinci, A. P. J. (1984). “Regulation of hyphal branching and hyphal orientation”. In
The
£co/ogy
and Physiology of the Fungal
Mycelium,
D. H. Jennings and A D. M. Rayner, eds., Cambridge University Press, Cambridge, UK.
Tsao, G. T., Hanson, T. P. (1975). Extended Monod equation for batch cultures with multiple exponential phases,
BiotechnoL
Bioeng.
17,1591-1598.
Turner, B. G„ Ramkrishna, D. (1988). Revised enzyme synthesis rate expression in cybernetic models of bacterial growth.
Bio techn o l. Bioeng.
31,41-43.
Varner, J., Ramkrishna, D, (1999) Metabolic engineering form a cybernetic perspective: Aspartate family of amino acids.
Metabolic
Eng.
1,88-116
Williams, F. M. (1967). A model of cell growth dynamics, /
Theoret. Biol.
15, 190-207.
previous page 337 Bioreaction Engineering Principles, Second Edition  read online next page 339 Bioreaction Engineering Principles, Second Edition  read online Home Toggle text on/off